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Photosynthesis fuels marine food webs, yet differences in fish
catch across globally distributed marine ecosystems far exceed
differences in net primary production (NPP). We consider the
hypothesis that ecosystem-level variations in pelagic and benthic
energy flows from phytoplankton to fish, trophic transfer efficien-
cies, and fishing effort can quantitatively reconcile this contrast in
an energetically consistent manner. To test this hypothesis, we
enlist global fish catch data that include previously neglected
contributions from small-scale fisheries, a synthesis of global fishing
effort, and plankton food web energy flux estimates from a
prototype high-resolution global earth system model (ESM). After
removing a small number of lightly fished ecosystems, stark
interregional differences in fish catch per unit area can be explained
(r = 0.79) with an energy-based model that (i) considers dynamic
interregional differences in benthic and pelagic energy pathways
connecting phytoplankton and fish, (ii) depresses trophic transfer
efficiencies in the tropics and, less critically, (iii) associates elevated
trophic transfer efficiencies with benthic-predominant systems. Model
catch estimates are generally within a factor of 2 of values spanning
two orders of magnitude. Climate change projections show that the
same macroecological patterns explaining dramatic regional catch dif-
ferences in the contemporary ocean amplify catch trends, producing
changes that may exceed 50% in some regions by the end of the 21st
century under high-emissions scenarios. Models failing to resolve
these trophodynamic patterns may significantly underestimate re-
gional fisheries catch trends and hinder adaptation to climate change.

fisheries catch | primary production | ocean productivity | climate change |
food webs

Nearly 50 years ago, John Ryther (1) published his seminal
work “Photosynthesis and Fish Production in the Sea” in

which he hypothesized that differences in net primary production
(NPP) alone could not explain stark differences in fish catch
across disparate marine ecosystems. Drawing upon “trophic dy-
namic” principles governing the transfer of energy through
ecosystems (2), he hypothesized that synergistic interactions
between NPP differences, the length of food chains connecting
phytoplankton and fish, and the efficiency of trophic transfers
were required to reconcile catch differences. The trophodynamic
principles drawn upon by Ryther now underpin diverse models
and indicators used in ecosystem-based marine resource man-
agement (3–5), yet stubborn uncertainties in the relationship
between ocean productivity and fish catch persist. Official catch
reports often omit globally significant discards and small-scale
artisanal and subsistence catch (6). Uncertain differences in
fishing effort and impacts of fishing history complicate attribu-
tion of catch differences to “bottom-up” considerations of ocean
productivity or “top-down” fishing effects (7). Difficulties di-
rectly observing and estimating trophodynamic properties, in-
cluding NPP (8), trophic levels (9, 10), and trophic transfer
efficiencies (3, 11–13), also weaken trophodynamic constraints.
These challenges have led many to forgo explicit trophody-

namic approaches to understand catch constraints in favor of
exploring correlations with diverse oceanographic indicators,

such as average chlorophyll and variability, the presence or
strength of fronts, ecosystem size, and dispersal properties (14–
18). Others have included subsets of trophodynamic factors
within large multifactor regressions (19, 20). Although often suc-
cessful in achieving significant correlations with catch, mechanistic
ambiguity hampers direct predictive use of such relationships and
limits integration with mechanistic models. These limitations
are compounded by contradictory results with respect to a key
corollary of Ryther’s hypothesis: that NPP alone is acutely insufficient
to explain cross-system differences in fish catch. Numerous studies
report strong relationships between NPP and catch within regions or
subsets of systems (21–23), perpetuating the use of NPP as an in-
dicator of fisheries catch and a driver of catch projections despite
studies providing strong contrary evidence across global scales (15).
The potential amplifying effect of trophodynamic processes on pro-
jected NPP trends under climate change (24–26) adds urgency to
resolving this disagreement.
We enlist three recent observational and modeling advances to

explain stark interregional catch differences: a reconstruction
of global fish catch from the Sea Around Us (SAU) project that
includes estimates of industrial fisheries, discards, and small-
scale fisheries (6), a synthesis of global fishing effort (27), and a
prototype high-resolution global earth system model (ESM) de-
veloped at the National Oceanic and Atmospheric Administration
(NOAA) Geophysical Fluid Dynamics Laboratory (GFDL-ESM2.6;
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Movie S1). ESM2.6 features a high-resolution physical climate
simulation with 10-km ocean resolution (28) coupled with the car-
bon, ocean biogeochemistry, and lower trophics (COBALT) model,
which provides estimates of energy flows through the planktonic
food web (29). Information from these observational and modeling
advances is integrated in a sequence of simple trophodynamic
models that elucidate factors required to explain contemporary
catch patterns. The most parsimonious model is then used to
assess the potential magnitude of shifts in regional catch patterns
under climate change.

Results
Perspectives on Catch and Fishing Effort. Predominantly coastal
large marine ecosystems (LMEs) account for 95% of global fish
catch despite covering only 22% of ocean area (Materials and
Methods). Fisheries catch per unit area (hereafter referred to
simply as “catch”) across LMEs varies by over five orders of mag-
nitude but most produce catches between 0.01 and 1 g C·m−2·y−1.
Contributions from small-scale fisheries and discards are largest in
the tropics, where increases to between 1.5 and 2 times industrial

values are common (Fig. 1B). The lowest catches were in Arctic and
Antarctic systems, with Australian LMEs and the insular Pacific-
Hawaiian LME also having very low values. Most upwelling systems
(e.g., Peru/Chile, Benguela, and Canary) and many temperate and
subpolar systems have elevated catch. High catches extend to the
tropics in Southeast Asia. Perhaps most striking, however, is that
catch in adjacent LMEs (e.g., Northern Australia, Southeast Asia)
or between LMEs commonly classified as similar (e.g., Peru/Chile
versus California upwelling LMEs) often vary by over an order
of magnitude.
Maximum fishing effort also varies sharply between LMEs

(Fig. 1C). Interpretation of inter-LME effort differences, how-
ever, is impeded by large uncertainties in catch per unit of vessel
power for different gears, fish targets, and fishing histories (27, 30).
In the Peru–Chile upwelling system, for example, an efficient small
boat fishery targeting massive aggregations of schooling small pe-
lagic fish has sustained exceptionally high catch rates despite
modest vessel power. We thus discarded a nuanced treatment of
cross-LME fishing effort differences and instead began our en-
deavor to unravel drivers of the patchwork of catch variation in

Fig. 1. Catch and effort summary. (A) The average of the top 10 annual catches by LME from the SAU catch reconstruction (6) expressed as grams of carbon
per square meter per year. A wet weight-to-carbon conversion of 9:1 was used (3). Catch in the central Arctic is very small (<1e-8 g C·m−2·y−1) and is not
shown. The black hatching reflects smaller inland seas and embayments not well resolved by ESM2.6 (see text). The gray hatching corresponds to low-effort,
low-catch (LELC) outliers from D. (B) The ratio of the average of the top 10 total to top 10 industrial-only catches. The light gray LMEs in the Arctic correspond
to systems with no reported industrial catch. (C) The average of the top 10 effort years expressed as integrated effective vessel power (effective watts per
square kilometer) (27). The gray LMEs have no effort data but, due to uncertainties in the location of fishing fleets, may have catches (e.g., Chukchi Sea and
Aleutian LMEs). (D) Plot of landings in A versus effort in C. The squares are Arctic and Antarctic LMEs, the triangles are Australian LMEs, and the diamond is
the insular-Pacific Hawaiian LME. All other points are shown as circles. The open symbols indicate no effort data. These have been placed along the lower
effort bound in D, although lack of data does not necessarily imply low effort.
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Fig. 1A by identifying low-effort, low-catch (LELC) outlier LMEs
where catch is less likely to strongly reflect the trophodynamic
constraints of primary interest herein (Materials and Methods).
Three effort, catch groupings were readily apparent (Fig. 1D).

The first, indicated by squares, included most Arctic systems,
where severe weather and ice contribute to extremely low effort
and low catch. A second, less marked LELC grouping included
Australian LMEs (triangles), where conservative quota-based
regulations contribute to high percentages of sustainable fishing
within relatively low productivity waters (7, 31, 32), and the ol-
igotrophic insular-Pacific/Hawaiian LME (diamond). The cor-
relation between effort and catch across the remainder of the
systems was low (r = 0.34), supporting potentially prominent
trophodynamic constraints. Our analysis thus focuses on this fi-
nal grouping, although sensitivity to including LELC outliers
(gray hatched systems in Fig. 1A) will be revisited in Discussion.

Connecting Phytoplankton and Fish. We considered a sequence of
four trophodynamic models of increasing complexity that em-
body prominent existing hypotheses for trophodynamic controls
on fish. Each model was posed in strictly energetic terms—
relating catch, a flux in grams of carbon per square meter per
year, to an estimate of the energy flux at the characteristic trophic
level of the catch. Our intent was to transparently assess the de-
gree to which proposed macroecological patterns embodied in
each model are needed to reconcile stark interregional catch
differences, while acknowledging the need to further isolate
mechanisms underlying those patterns that do.
Model 1 assumes that catch (C) in each LME can be explained

by NPP after adjusting for the trophic level of the catch:

C= α×NPP×TEðTLeq−1Þ. [1]

This model is analogous to that used by Pauly and Christensen
(3) to calculate the primary production required to sustain fish-
eries, but here we apply it in reverse to assess how well NPP can
explain catch. TLeq is the equivalent trophic level of the aggre-
gate catch derived from FishBase (33) (Materials and Methods).
Phytoplankton are assigned to trophic level 1, such that TLeq-1 is
the number of trophic steps separating phytoplankton from the
fish catch. TLeq generally ranges from minimum values of ∼3 in
LMEs where catch is dominated by small pelagic fish (e.g., Peru-
vian anchovetta) to >4 for LMEs where catch is dominated by
larger fish (Fig. S1). The two dimensionless free parameters in
model 1 are the trophic transfer efficiency (TE), controlling the
decay of energy between trophic levels, and a harvesting factor
(α) interpreted as the fraction of energy available at TLeq that is
realized as catch. Single values of TE and α are fit across LMEs
such that any interregional variation in these parameters would
appear as unexplained catch variance.
Model 2 tested whether catch is better related to the energy

available from the plankton food web via the flux of detritus to
the sediment (FDET) and mesozooplankton production not
consumed by other zooplankton (MESOZP). It thus replaced
NPP in Eq. 1 with energy flows through these benthic and pelagic
conduits while keeping the same 2 degrees of freedom (α, TE):

C= α
�
FDET×TEðTLeq−1Þ +MESOZP×TEðTLeq−2.1Þ�. [2]

The model is depicted in Fig. S2. FDET and MESOZP in Eq. 2
are referenced to detrital and zooplankton trophic levels as-
sumed in FishBase (1 and 2.1, respectively) to be consistent with
TLeq estimates. We note, however, that Eq. 2 only relies on these
values to estimate the number of trophic steps separating plank-
ton food web fluxes and catch. COBALT’s more dynamic repre-
sentation of plankton food webs (29) is reflected in FDET and
MESOZP. We did not attempt to separately model benthic and

pelagic catch because fish guilds strongly intermingle in shelf
systems where both FDET and MESOZP are significant (15).
Benthic primary production, which remains weakly constrained
in magnitude, global distribution, and contribution to fish food
webs (34, 35), will be addressed in Discussion.
Model 3 was analogous to model 2 but considered whether

catch is consistent with reduced trophic transfer efficiencies in
warm-water tropical and subtropical systems due to high meta-
bolic demands (36, 37). This possibility is parameterized with a
dimensionless factor fT that adjusts TE in Eq. 2 for warm-water
systems:

TEwarm = fTTE; T100 >T100,warm, [3]

where T100 is the 100-m average temperature in each LME, and
fT and T100,warm are single values fit to catch across LMEs, giving
4 degrees of freedom.
Last, model 4 tested whether different characteristic trophic

efficiencies for benthic (TEB) and pelagic (TEP) fluxes in Eq. 2
can better explain observed catch. This reflects hypothesized
lower foraging costs for benthic environments due to their re-
duced dimensionality relative to pelagic environments (15). The
change was made in addition to the differentiation between
warmer and cooler environments reflected in Eq. 3, bringing the
number of degrees of freedom to 5. Differentiation of TEB and
TEP is not meant to imply distinct food chains. Rather, values
reflect benthic or pelagic-only limits and their weighting via Eq. 2
provides a means of inferring an emergent TE from catch in
mixed benthic/pelagic systems.
Estimates of the physical and planktonic drivers in models 1–4

are drawn from the last 5 y of a 55-y ESM2.6 simulation (Ma-
terials and Methods). ESM2.6 robustly captures observed and/or
satellite-based/empirically based estimates of physical and bio-
geochemical properties and fluxes across most LMEs (Table S1).
Exceptions are smaller inland seas and shallow coastal embay-
ments (Baltic, Black, Red, and Yellow Seas and the Gulf of
Thailand) with intricate exchange flows and strong benthic in-
teractions that remain poorly resolved. These five systems are
marked with black hatching in Fig. 1A and have not been
considered herein.
Models 1–4 were fit to the mean of the top 10 catches using

maximum-likelihood estimation assuming a Gaussian error distri-
bution of the residuals of the log10-transformed modeled and ob-
served catch. This assumption was confirmed with a Kolmogorov–
Smirnov test. The small sample Akaike information criterion
(AICc) was used to compare models and Akaike weights (wAIC)
were used to quantify the relative evidence for each model (38).
Values of TE were constrained within typical observed ranges of
0–0.4 (3, 11), and α was constrained between 0 and 1.

Trophodynamic Drivers of Global Fish Catch. Catch estimates based
on NPP (model 1) failed to predict large inter-LME catch dif-
ferences, markedly overestimating low-catch and underestimating
high-catch LMEs (Fig. 2A). This is consistent with Ryther’s con-
tention that NPP differences alone are insufficient to explain
cross-ecosystem catch differences. Closer inspection of cross-LME
NPP differences (Fig. 3A) provides further insight. With the ex-
ception of extremely high/low-latitude Arctic/Antarctic systems,
NPP is tightly bounded between 100 and 400 g C·m−2·y−1, far from
the two order-of-magnitude catch differences in Fig. 1A. The
relative stability of NPP across LMEs reflects the strong feedback
between NPP and nutrient recycling (39): as nutrients become
scarce, plankton communities shift toward microbial-dominated
food webs that efficiently recycle nutrients, buffering NPP de-
clines. Little of this recycled microbial production, however, ever
reaches fish because it must traverse multiple often inefficient
trophic links to do so (29). The same biases evident in Fig. 2A are
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found when model 1 is forced with satellite-based NPP estimates
(Fig. S4).
Explicitly accounting for benthic (FDET) and pelagic (MES-

OZP) pathways connecting plankton and fish (model 2) sharpens
estimated cross-LME catch gradients, resulting in marked im-
provement in correlation and root-mean-squared error (RMSE)
relative to model 1 (Fig. 2B). MESOZP is highly correlated with
NPP (r = 0.91), but its relative variations are amplified: a small
percentage of NPP (1–6%) passes through mesozooplankton in
low-NPP systems (particularly those forming the borders of or
within subtropical gyres), whereas higher percentages (6–12%)
are typical in elevated NPP temperate regions (Fig. 3B). The
trophic amplification of spatial NPP differences in ESM2.6 re-
flects mechanisms invoked by Ryther: food chains in more pro-
ductive and/or temperate bloom regions shorten due to increased
herbivory on larger phytoplankton and trophic efficiencies in-
crease as ingestion rates become large relative to consumer basal
metabolic costs (29, 40). Cross-LME differences in FDET are also
accentuated relative to NPP (Fig. 3C), but NPP and FDET are not
strongly correlated (r = 0.49). FDET maps more strongly onto
shallow continental shelf systems, particularly temperate LMEs
with seasonal phytoplankton blooms that have historically pro-
duced some of the highest catches (e.g., the North Sea and
Northeast US shelf, blue triangles in Fig. 2).
Although model 2 is clearly better than model 1, it still gen-

erally overestimates warm-water and underestimates cold-water
LME catch (Fig. 2B, red versus blue). Model 3 addresses this by
lowering trophic efficiencies in tropical and subtropical systems
(T100 > 20 °C, Fig. 2C). The 20 °C isotherm corresponds closely
with the boundary between low ratios of O2 supply to demand for
fishes in tropical/subtropical systems and rapidly increasing val-
ues in temperate waters (36). Even after this improvement,
however, model 3 still underestimates very high catch rates in

predominantly benthic cold water systems (blue triangles in Fig.
2C), and many of the largest remaining overestimates corre-
spond to predominantly pelagic systems (circles). Model 4 re-
duces, but does not entirely remove, this tendency by associating
higher trophic efficiencies with benthic-dominated food webs
(Fig. 2D). Estimates still fall short of the highest catches, many
from shallow shelf systems in the temperate Northern Hemi-
sphere (Discussion), but the overall correlation reaches 0.79 and
the discrepancies with reconstructed values generally fall below a
factor of 2 (i.e., <0.3 RMSE on a log10 scale) for catch rates per
unit area spanning two orders of magnitude across LMEs. The
Akaike weights support model 4 (wAIC = 0.85) as the model
closest to the true dynamics. A lesser but nonetheless significant
weight is associated with model 3 (0.15). Models 1 and 2 received
negligible weights.
The parameters corresponding to the best-fit case for model 4

infer catch as 14% of available energy (α = 0.14), TEs in tropical/
subtropical systems that are 74% of temperate values, and
greater benthic than pelagic TEs (TEB = 0.40, TEP =0.14). A
range of parameter combinations, however, can produce statis-
tically similar results. The inferred ratio of TE for tropical/sub-
tropical waters relative to higher latitude systems (fT) is robustly
less than 1, with 95% fT confidence intervals covering 0.62–0.86.
Model skill was greatest with elevated values for TEB relative to
TEP, but the gradations in fit between a range of combinations
from the high-TEB, low-TEP quadrant were modest (Fig. 4A).
This holds even if TE values beyond the plausible range of 0–0.4
are allowed.
Perhaps the most significant parameter ambiguity occurred

between TE and α (Fig. 4B). Low-TE parameter combinations
compensated for reduced energy flows to fish by harvesting a
larger fraction of the available energy (i.e., high α), whereas
those with higher TEs require only a small harvested fraction.
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Fig. 2. Comparison of estimated catches from trophodynamic models 1–4 (A–D) with SAU estimates (6). LMEs are divided in four categories. The red symbols
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Fig. 4B thus vividly illustrates the need for improved TE con-
straints to uniquely understand the energetic constraints on catch.

Implications for Future Change. The computational cost of ESM2.6
prevented simulating the many centuries required for climate
change projections (41). We could, however, examine the broad-
scale trophodynamic implications of climate change using pro-
jections from an analog model, ESM2M-COBALT (25) run at
the ∼1° horizontal ocean resolution typical for projections used
for the Intergovernmental Panel on Climate Change Fifth As-
sessment Report. Projected percent catch changes in the latter
half of the 21st century coincided with, but were considerably
larger than, projected percent changes in NPP (Fig. 5 A and B).
This amplified pattern holds for the range of parameter values

within the 95% confidence interval in Fig. 4, and the optimal
parameter settings for models 2 and 3 (Fig. S5). Although re-
gional NPP projections vary between ESMs (42–44), Fig. 5 joins
a growing body of evidence for amplified climate change impacts
at higher trophic levels (24–26). Projected regional changes in
catch may exceed 50%, far above oft-cited modest-to-moderate
global NPP trends under climate change (42), and adding ur-
gency to efforts to understand the combination of large-scale and
local processes influencing regional climate change impacts on
marine resources (45–48).
The same trophodynamic mechanisms operating on spatial

NPP gradients to sharpen inter-LME catch differences in the
contemporary ocean steepened NPP trends under climate
change. NPP declines were “triple taxed” for MESOZP (25)
(Fig. 5C): zooplankton consumed less, a smaller fraction of what
they consumed was left for growth and reproduction after
meeting basal metabolic costs, and they were forced to rely more
on secondary production as large phytoplankton were sup-
pressed by nutrient declines associated with increasing stratifi-
cation (i.e., mesozooplankton trophic level increases). MESOZP
in areas of increasing NPP generally benefited from the reverse
of these processes. Meanwhile, the detrital flux to the benthos
(Fig. 5D) in most low and mid-latitude nutrient-limited regions
was tightly tied to declining nutrient fluxes to the euphotic zone
as stratification increases. Declines were exacerbated by shal-
lower remineralization of sinking detritus in acidifying waters
due to reduced protection of organic matter by calcite and ara-
gonite minerals (49, 50).
The effect of reduced trophic efficiencies in tropical waters

(fT < 1 for T100 > 20 °C) was reflected in regions of discontinuous
deepening of projected catch reductions or damping of catch
increases where waters crossed the 20 °C temperature isotherm
as the ocean warms (Fig. 5B). Although steep increases in the
ratio of oxygen supply to demand in the vicinity of this isotherm
support a sharpen response (36), it is likely overaccentuated by
the binary representation of this effect used herein.
We note that the projections in Fig. 5 reflect only the troph-

odynamic contribution to projected catch. The results implicitly
assume that fish will occupy novel warm environments expected
in equatorial waters (51) to the extent that trophodynamic

Fig. 3. Energy flow through the planktonic food web. (A) ESM2.6 simulated
NPP by LME in grams of carbon per square meter per year. (B) Meso-
zooplankton production not consumed by other zooplankton (MESOZP)
expressed as a fraction of NPP. (C) The flux of detritus to the benthos (FDET)
expressed as a fraction of NPP.
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Fig. 4. Model 4 parameter uncertainties. (A) Contours of the optimal RMSE
for each value of TEP and TEB (i.e., the fit reflects an optimization over α, fT,
and T100,warm for each TEB, TEP combination). The gradual slope of the
contours across the upper left quadrant of the parameter space and
extending into the upper right quadrant indicates weak constraints on TE
values across this range. The star corresponds to the best fit in TEB, TEP space.
The thick black contour corresponds to the 95% confidence interval on TEB,
TEP. (B) As in A, but the optimal α value for each TEB, TEP combination is
contoured instead of RMSE. Note the broad range of α values that fall within
the 95% TEB, TEP confidence intervals and the strong negative correlation
between TE values and α.
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considerations allow. This contrasts with the bioclimate envelope
approach for modeling fisheries, which draws finer gradations in
habitat suitability based on present species range and projects
downward catch trends in novel equatorial environment (52).
Integration of trophodynamic insights herein with refined habitat
and adaptability considerations is needed to reduce uncertainty
in equatorial catch projections.

Discussion
Revisiting the trophodynamic drivers of fish catch with new
datasets and models showed that a considerable fraction of
variation in maximum catch across globally distributed ecosys-
tems can be explained by planktonic food web and trophic
transfer considerations. NPP, however, was clearly inadequate to
explain stark interregional catch differences. Furthermore, the
trophodynamic factors required to reconcile catch differences in
the contemporary ocean robustly amplified catch trends expec-
ted under climate change, such that projected changes by the end
of the 21st century may exceed 50% in some regions under high
emissions. This underscores the need for ecosystem-based fish-
eries management strategies that are resilient to potentially large
changes in catch potential, and the need for improved con-
straints on regional ocean productivity trends. Although ESM2.6
provides an effective global perspective of cross-LME catch
patterns and their sensitivity to change, understanding of specific
regions may be most rapidly achieved by combining improving

global projections and downscaling with high-resolution regional
models (46–48).
Interregional catch variations left unexplained by the troph-

odynamic processes considered herein may reflect unresolved
effects of past and present fishing effort, persistent uncertainties
in catch reconstructions, errors in planktonic food web estimates,
and unresolved trophodynamic factors. We discuss each of these
elements before revisiting Ryther’s hypothesis.
Fishing effort was coarsely handled by identifying and filtering

out LELC outlier LMEs as systems where catch was less likely to
reflect trophodynamic constraints (Fig. 1D). Adding back the
Australian and Hawaiian systems moderately degrades troph-
odynamic model skill (Fig. S6, r = 0.73, RMSE = 0.45) and
produces a strong negative correlation between inter-LME effort
differences and unexplained catch variability (r = −0.53 versus
r = −0.27 without these systems). The inferred trophodynamics,
however, remain similar. If Arctic/Antarctic LELC outliers are
included, estimates from all trophodynamic models are highly
correlated with catch, but all egregiously overestimate Arctic/
Antarctic catches and egregiously underestimate catch in other
systems (Fig. S7, RMSE = 0.75). Arctic/Antarctic catches simply
cannot be reconciled with other LMEs via trophodynamic factors
alone, and including these systems in model fitting risks strong
aliasing of effort effects onto trophodynamic estimates, and gives
a misleading impression of the value of NPP as a predictor of
cross-LME catch differences.

Fig. 5. Projected change in NPP and catch under a high-emissions scenario (RCP8.5) from ESM2M-COBALT (25, 69) between 1951–2000 and 2051–2100 using
the best-fit trophodynamic model: (A) percent change in NPP, (B) percent change in fish, (C) percent change in MESOZP, and (D) percent change in FDET. FDET
changes are only shown for FDET > 2 g C·m−2·y−1 to emphasize changes in systems with significant benthic relative to pelagic fluxes.
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We note that the low correlation between inter-LME effort
differences and remaining misfits after filtering out LELC out-
liers (r = −0.27) does not rule out effort from contributing to
remaining misfits. The peak integrated vessel power measure
applied herein does not account for differences in catchability
(27), profitability (53), and time integrated fishing impacts (7)
that can further influence realized catches.
Accounting for small-scale fisheries alters catch patterns rel-

ative to past studies of oceanographic controls on fish catch (6).
We assessed the trophodynamic implications of this by refitting
models to industrial-only catch data commonly reported to the
Food and Agriculture Organization (FAO). Overall model skill
contrasts were similar (Table S2), but fitting to industrial-only
catch inferred somewhat lower TEs in tropical systems (fT = 0.68
versus fT = 0.73) to explain reduced catch estimates where small-
scale fisheries are most prominent. Improvements in catch
reporting (6) could further reduce biases in trophodynamic es-
timates arising from catch reporting gaps. We also note that the
catch-based analysis herein cannot address potential yield of
largely unexploited but potentially substantial mesopelagic fish-
eries (12).
We limited our analysis of ocean productivity constraints of

fish catch to LMEs due to their overall predominance in the
global fish catch (Materials and Methods, 95% of catch despite
22% of ocean area). High-seas fisheries also target many highly
migratory species (54), making the spatial associations with
ocean productivity required for this study difficult. Although
fishing has expanded offshore in recent decades, degrading a
number of high value stocks (54), catch outside LMEs remains
below 9% of the global total in all years. Offshore effort and
ecosystem-level exploitation per area also generally remains far
less than in coastal regions (55, 56). This is in part a reflection of
the high capital cost of high-seas fishing that restricts this activity
to a select subset of nations (57). Plotting the integrated catch
and effort firmly places non-LME regions among the LELC
outliers in Fig. 1D (Fig. S8).
For the plankton food web, we relied on ESM2.6 to resolve

two primary contrasts between NPP and the supply of energy to
fish. The first was the amplification of cross-LME percent dif-
ferences in mesozooplankton production relative to NPP (Fig.
3B). The second was similarly marked variation in the detrital
flux to the benthos combined with a strong skew in FDET toward
LMEs with broad, shallow shelves (Fig. 3C). Both of these pat-
terns are supported by past empirical analysis and understanding
of the underlying mechanisms (29, 40, 58, 59). However, al-
though the performance of ESM2.6 at the LME scale was en-
couraging (Table S1), the model still suffers from regional biases
and incomplete process resolution. Perhaps most notable for this
are the 40-m minimum depth (Materials and Methods) and
stubborn ESM2.6 low-chlorophyll biases in very high-chlorophyll
near-shore regions. Improvement is needed, but the robustness
of conclusions when using satellite NPP estimates that do not
suffer from these biases bolsters confidence in our primary
conclusions (Fig. S4).
Our trophodynamic models did not consider the potential

contribution of benthic primary producers because the magni-
tude of benthic NPP, its spatial distribution, and how much it
contributes to local fish food webs remain highly uncertain (34,
35). Macrophytes, the dominant benthic primary producer in
coastal systems, were recently estimated to provide 1.5 Pg C·y−1

(σ = 0.73 Pg C·y−1), or about 3% of global NPP. Approximately
43% of this production is exported from the regions in which it
grows (34, 35). Macrophyte production may be augmented by
∼1 Pg C·y−1 sea grass, mangroves, corals, and marsh plants with
similarly uncertain contributions to food webs (60). To test the
sensitivity of our results to inclusion of benthic NPP, we considered
bounding scenarios where 0.5 and 3 Pg C·y−1 of benthic NPP was
distributed evenly across waters <50 m deep and added this pro-

duction to FDET in Eq. 2. A global contribution of 0.5 Pg C·y−1 to
local fish food webs had little effect, but 3 Pg C·y−1 eroded the
value of invoking elevated trophic efficiencies for benthic sys-
tems and favored model 3 over model 4 (Table S2). Improved
benthic NPP constraints are needed, but the large skill differ-
ences between trophodynamic models 3–4 and models 1–2 are
robust, as is the amplification of catch trends under climate
change (Fig. S5).
Improved TE constraints were found to be critical for reducing

the scope of similarly performing parameter contributions and
quantifying the fraction of available energy realized as catch (Fig.
4B). This finding is consistent with other studies (11–13), sug-
gesting the importance of moving from the broad TE ranges
applied herein toward estimation of TE probability densities
(61). Such probability densities could allow Bayesian approaches
to more formally incorporate prior parameter estimates.
The blending of empiricism and mechanistic principles applied

in this study is intended to help bridge the gap between pre-
dominantly data-driven analysis of catch indicators (14, 15, 19)
and the development and application of more mechanistic global
fisheries models rooted in theoretical constraints but of often
challenging complexity (13, 62–65). Parameters and emergent
patterns from the simple trophodynamic models herein can be
directly compared against simulated patterns from these latter
models. The simple trophodynamic approach has also enabled
rapid exploration of parameter space for alternative parameter
combinations that can explain observed catch patterns equally
well. Although we cannot fully resolve the detailed mechanisms
that may underlie, for example, reduced trophic efficiencies
inferred in tropical systems or enhanced trophic efficiencies in
benthic-predominant systems, we have demonstrated their po-
tential prominence in determining large-scale catch patterns.
The new datasets and models applied herein have allowed a

richer examination of the range of trophodynamic processes
required to reconcile pronounced gradients in fish catch across
disparate ecosystems. Results invoke dynamic variations in the
length and efficiency of food chains along productivity gradients
analogous to those discussed by Ryther, although contrasts be-
tween systems are less stark than Ryther invoked. They also
stress the importance of shallow benthic environments and
metabolic contrasts between tropical and other systems. Al-
though these refinements are notable, the essence of Ryther’s
hypothesis, that NPP and trophodynamic processes must act
synergistically to generate stark observed catch gradients, is
supported by our results. So too is the corollary that NPP alone is
a poor indicator of differences in fish yields across disparate
marine ecosystem types (1, 15). Neglecting the trophodynamic
processes required to reconcile catch across these regions risks
severely underestimating cross-LME differences in maximum
sustainable catch in the contemporary ocean, and under-
estimating potential trends under climate change.

Materials and Methods
The trophodynamic catchmodels described in themain text require estimates
of fish catch, catch trophic level, fishing effort, and plankton foodweb fluxes.
Catch was obtained for each LME from the SAU project (www.seaaroundus.
org) for the years 1950–2010. Catches in metric tons of wet weight per year
for each LME were converted to grams of carbon per square meter per year
using a 1/9 ratio of carbon to wet weight (3). The mean of the top 10 annual
total catches was used for fitting the trophodynamic models described in the
main text. This choice reflects a compromise between including enough
years to average out the effect of highly unsustainable fishing, while not
requiring so many years that catch estimates reflect long periods before
industrialized fishing when catch was less likely to reflect ocean productivity
constraints. Results, however, were robust to averages taken over 5, 10, 20 y,
or even the 60 y (Table S2).

We focus on catch in LMEs. These are ecologically linked mainly coastal
systems (66) that have been broadly adopted for ecosystem-based man-
agement and past studies of global fish catch (7, 13–15, 19). LMEs account
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for 95% of fish catch in the SAU reconstruction, despite covering only 22%
of ocean area. Further examination of this limitation can be found in
Discussion.

Trophic-level data were drawn from FishBase, which derives estimates
based on extensive gut content information (33). The equivalent trophic level
(TLeq) of the aggregate catch for each LME was calculated such that the
primary production required to support the total catch at TLeq (right-hand
side of Eq. 4 below) was equal to the primary production required based on
summing the individual catch constituents (left-hand side):

Xm
i=1

 
Ci ×

�
1

TE

�TLi−1
!
=

 Xm
i=1

Ci

!
×
�

1

TE

�TLeq−1

, [4]

where m is the number of species caught in each LME. TLeq is thus based on
matching the implied energetic cost of the disaggregated catch, unlike a
biomass weighted average. Although a single fish food web TE is fit for each
LME (see main text), the TE between NPP and MESOZP for models 2–4 is
calculated by ESM2.6. We thus define TE based on the average decay of
energy between TL = 1 and TL = 4 (i.e., piscivores):

TE=
�
FDET×TEð4−1Þ +MESOZP× TEð4−2.1Þ

NPP

�1=3

. [5]

The numerator of Eq. 5 is the energy available at TL = 4, the denominator is
the energy at TL = 1, and the 1/3 exponent extracts the mean decay across 3
trophic levels. MESOZP is treated as trophic level 2.1 based on FishBase
conventions (33). TE and TLeq are calculated as TEs for each catch model are
estimated, resulting in consistent optimal sets of TE, TLeq, and TE for each
model. Results are highly robust to estimating TE across 4, 4.5, and 5 trophic
levels (Table S2).

Fishing effort data were mapped from FAO, European, and associated
bodies’ data between 1950 and 2006 (30). The mean of the top 10 effective
effort years was used in Fig. 1 C and D to broadly characterize cross-LME
differences for the purpose of identifying LELC outlier systems (see main
text). The same LELC outlier systems are identified if effort years were
chosen to precisely match the top 10 catch years (Fig. S8), but this would
have prevented use of the last 4 y of the catch time series (2007–2010) that
are pending updates to the effort database.

ESM2.6 combines the high-resolution physical climate of GFDL’s CM2.6
global climate model (28), featuring 10-km horizontal ocean resolution and
50-km horizontal atmospheric resolution with the 33 tracer COBALT plank-
tonic ecosystem model (29). The ocean has 50 vertical layers, with 10-m
vertical resolution over the top 200 m and a minimum depth of 40 m (i.e., all
waters <40 m are treated as 40 m deep). This effects 3.5% of the global
ocean and, on average, 12% of the area of LMEs in Fig. 2. ESM2.6 was run
for 55 y as a fully coupled ocean–atmosphere–land–sea ice configuration
with 1990 greenhouse gas conditions on NOAA’s Gaea supercomputer. The
run was initialized with hydrography from year 141 of a 1990 control with
the CM2.6 physical climate model and nutrients from the World Ocean Atlas
(67), dissolved organic carbon from GLODAP (68), and other fields from a
coarse-resolution COBALT simulation (29). The simulation used 15,744 pro-
cessors for a throughput of ∼0.5 y per d. This is ∼7,500 times the cost per
simulation year as GFDL’s ESMs contributed to the Fifth Assessment Report

that featured resolutions more typical for climate change simulations (e.g.,
∼1–2° oceans and atmospheres) (69).

COBALT’s planktonic food web dynamics are represented with a size-
structured nutrient–phytoplankton–zooplankton formulation that draws
heavily from allometric constraints to represent plankton physiology and
consumer–prey interactions (29). There are three phytoplankton groups
(small, large, diazotrophs), three zooplankton groups, free-living bacteria,
sinking detritus, and three types of dissolved organic material with differing
labilities. Fig. S2 provides a schematic of the plankton food web dynamics
most relevant to results herein. Mesozooplankton production is calculated as
the sum of medium and large zooplankton spanning size classes between
200 μm and 2 cm in equivalent spherical diameter. We then subtract out
consumption of medium zooplankton by large zooplankton. Detritus sink-
ing and remineralization followed a “mineral ballast model” (49, 50), with
purely organic detritus having an e-folding remineralization depth scale of
188 m, but this rate is slowed considerably by minerals (e.g., silica, calcium
carbonate) and low-oxygen environments. Two perturbations relative to the
baseline COBALT formulation (29) were implemented for ESM2.6. First, ni-
trogen-to-phosphorous ratios of small phytoplankton were elevated and
ratios for large phytoplankton lowered for consistency with observed stoi-
chiometric tendencies (70, 71). Second, phytoplankton aggregation was
suppressed when nutrients are not strongly limiting (72).

ESM2.6 resolves prominent modes of climate variability, but, like other
coupled atmosphere–ocean simulations, the variability does not occur in
phase with historical observations (41). Results were not sensitive to using a
range of different 5 y or longer averaging periods (Table S2).

Global simulations with COBALT at coarser horizontal resolutions (∼1°
latitude, longitude) have been shown to produce quantitatively credible
estimates of carbon and energy flow throughout the planktonic food web
across broadly defined ocean biomes (29). We extended this evaluation to
LME scales for this study (Table S1). ESM2.6 captured broad-scale differences
across most LMEs but remained limited in its representation of smaller in-
land seas and embayments (Red, Yellow, Black, and Baltic Seas, Gulf of
Thailand). The primary shortcomings of the model are (i) it underpredicts
very high chlorophyll (>5 mg·m−3) inferred from satellites in near-shore re-
gions (<25 m) and (ii) the fully coupled construction of the model leaves it
more susceptible to regional biases and drifts in biome boundaries. Chlo-
rophyll mismatches in near-coastal regions may in part arise from errors in
satellite estimates linked to the complex optical properties of these waters
(73, 74), but likely also reflect ESM2.6 limitations in near-shore regions—
including the 40-m minimum depth and simple representation of sediment/
nutrient interactions (29).
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